返回第322章 毕克定理(1 / 2)数学大帝首页

柯尔莫哥洛夫是随机过程论的奠基人之一。

柯尔莫哥洛夫证明:相容的有限维概率分布族决定无穷维概率分布的“相容性定理”,解决了随机过程的概率分布的存在问题。

柯尔莫哥洛夫的学生阿诺尔德说:“老师,你的随机过程是什么?”

柯尔莫哥洛夫说:“一件事,或者一个系统,他的发生,需要有很多零部件,而这些零部件都会有一定的概率。通过研究这些零部件的概率,来研究这个系统的可行性和稳定性。”

阿诺尔德说:“听起来很麻烦呀,我们以后会接触到这些东西吗?”

柯尔莫哥洛夫说:“那是肯定的。很多东西在制造以前,我们需要模拟它的存在,已经它运作时的合理性。所以以后,肯定有用的。”

阿诺尔德说:“可是,为什么不直接跳过这个麻烦的过程。毕竟是理论化的,离显示还差些距离。我们直接研究存在的东西就可以了。如果没有,我们直接制造出来,不管三七二十一。”

柯尔莫哥洛夫说:“简单的,肯定是这样的,但是复杂的,尤其是昂贵的。如果造出来,根本就不合理,甚至没法用,那就白花很多钱,不划算。”

阿诺尔德恍然大悟的点点头。

柯尔莫哥洛夫说:“除此以外,我们模拟这个随机过程的时候,会更加深刻的理解这个机构。如果只是制造出来用,那复杂一些的东西,我们未必能完全明白其内部的构造。”

提出了现代的一般的条件概率和条件期望的概念并导出了他们的基本性质,使马尔可夫过程以及很多关于随机过程的概念得以严格地定义并论证